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A framework is presented based on color symmetry theory that will facilitate

the determination of the subgroup structure of a crystallographic Coxeter group.

It is shown that the method may be extended to characterize torsion-free

subgroups. The approach is to treat these groups as groups of symmetries of

tessellations in space by fundamental polyhedra.

1. Introduction

One of the important problems in mathematical crystal-

lography is the characterization of the subgroup structure of

crystallographic groups. Crystallographic groups and their

subgroups, and relations between these groups, are essential in

understanding the fundamental properties of symmetry and

periodicity of crystals, topological properties of crystal struc-

tures, twins, modular and modulated structures, as well as the

symmetry aspects of phase transitions and physical properties

of crystals.

In this work, the main focus is to discuss a process to derive

the subgroup structure of crystallographic Coxeter groups,

one of the largest families of crystallographic groups. The

method uses the connection between group theory and color

symmetry theory, brought about by representing crystal-

lographic Coxeter groups and their subgroups as isometries

acting on tessellations in Euclidean, spherical or hyperbolic

space. The approach used allows for the characterization of

each subgroup by types of symmetries, made possible by

constructing colorings of its corresponding tessellation. This

facilitates the discovery of subgroups with interesting

symmetrical structures. This is particularly pertinent in

exploring groups in hyperbolic space, which have not been as

widely discussed compared to the Euclidean and spherical

cases, and contain an abundance of hyperbolic symmetries.

Two-dimensional hyperbolic crystallographic groups, for

instance, contain five-, eight- and 12-fold rotational symme-

tries which can be used to describe quasicrystal structures.

Moreover, understanding subgroups of crystallographic

groups acting as symmetries on tessellations in hyperbolic

space provides advantages in establishing connections of these

groups to infinite periodic minimal surfaces. These have been

used to describe crystals of surfaces or films, such as liquid

crystalline structures (Sadoc & Charvolin, 1990). Interest in

hyperbolic crystallographic groups and their subgroups also

arises in the study of crystal nets (Ramsden et al., 2009) and

chemical networks as hyperbolic forms (Nesper & Leoni,

2001). These groups also play a role in the study of emerging

new structures, such as for example in the fullerene family

(Pisani, 1996; Rasetti, 1996) and in snow crystals (Janner, 1997,

2001).

The role of the subgroup structure of crystallographic

Coxeter groups in the construction of color groups associated

with tilings has been recognized in previous works (see De Las

Peñas et al., 2006; Frettlöh, 2008, and references therein).

Knowledge of these subgroups in terms of their symmetries

facilitates the use of colorings of tilings to model crystals and

sheds light on their symmetrical structures.

Consider, for instance, the cubic honeycomb f4; 3; 4g shown

in Fig. 1(a) defined as the regular space-filling tessellation of

the Euclidean space E3 made up of cubes or cubic cells. The

symmetry group of the tessellation is the crystallographic

Coxeter group

hP;Q;R; SjP2
¼ Q2

¼ R2
¼ S2

¼ PQð Þ
4
¼ ðQRÞ

3
¼ ðRSÞ

4

¼ ðPRÞ2 ¼ ðPSÞ2 ¼ ðQSÞ2 ¼ ei:

The generators are the reflections P;Q;R; S about the planes

mP;mQ;mR;mS. This group is isomorphic to the space group

Pm3m (in IUCr notation). A cubic cell presented in Fig. 1(b)

from the f4; 3; 4g honeycomb in Fig. 1(a) shows the planes of

reflections. The plane mP (yellow) is parallel to the top and

bottom faces of the cube and cuts the other faces in half; the

plane mQ (red) is the diagonal plane which cuts the front and

back faces of the cube into right triangular regions; similarly,

the plane mR (blue) is also a diagonal plane, this time cutting

the top and bottom faces into right triangular regions; finally,

the plane mS (gray) is the plane which is off the center of the

cube and contains the front face. These four planes form the

walls of a tetrahedron with dihedral angles �=4; �=3,

�=4; �=2; �=2; �=2, which serves as a fundamental polytope

(asymmetric unit) of the tessellation. The group G ¼

hP;Q;R; Si ffi Pm3m has a translation subgroup generated by

the standard orthogonal basis a; b; c of the cubic lattice. A

vertex coloring of the f4; 3; 4g honeycomb where the elements

of the subgroup H ¼ hQ;R; S;PQRPQPi of G effect a

permutation of the colors (H is the color group) is shown in

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=eo5024&bbid=BB16
http://crossmark.crossref.org/dialog/?doi=10.1107/S010876731301283X&domain=pdf&date_stamp=2013-06-18


Fig. 1(c). The group H ffi Im3m has the same point group as G

with translation lattice the body-centered lattice generated by

2a; 2b; 2c and the centering vector aþ bþ c. This coloring

models the crystal niobium monoxide (NbO) with unit cell

shown in Fig. 1(d). The niobium (Nb) atoms are represented

by the green vertices while the oxygen (O) atoms are repre-

sented by the dark blue vertices. In this representation, the

vertices colored white do not represent a particular type of

atom. The white vertices form the orbit of the origin under H,

which consists of one quarter of the lattice vertices of the

original cubic lattice, since H is a subgroup of index 4 in G.

The remaining vertices given by the Nb and O atoms are also

invariant under H and form a single orbit. The generators

Q;R; S and the twofold rotation PQRPQP of H act as color

symmetries on the vertices, and thus H acts as a group of color

symmetries. The symmetries in H that fix the colors are the

index-2 subgroup K of H, obtained by removing the transla-

tion aþ bþ c (which interchanges the colors). The group K

has translation lattice spanned by 2a; 2b; 2c and is isomorphic

to Pm3m. K is the symmetry group of NbO. This coloring

exhibits geometrically the embedding of

the symmetrical structure of NbO in the

cubic crystal family.

In this paper, an approach to deter-

mine the torsion-free subgroups of

crystallographic Coxeter groups will

also be presented. By a torsion-free

subgroup, we mean a subgroup all of

whose non-identity elements are of

infinite order. The geometrical interest

of such a subgroup is that when the

points on the plane of the tiling are

identified using the elements of the

subgroup, the result is a manifold. The

role of torsion-free subgroups and their

importance in crystallography have

been discussed in the literature (e.g.

Sadoc & Charvolin, 1990).

We apply our methodology to two

particular examples involving index-6

subgroups (a Euclidean and a hyper-

bolic case) including the derivation of

torsion-free subgroups.

We begin our discussion by

describing the setting of our study on

crystallographic Coxeter groups.

2. Crystallographic Coxeter groups

We first consider a Coxeter polytope D

in Xd
¼ E

d; Sd or Hd, that is, in either

Euclidean, spherical or hyperbolic

d-space, respectively. In this case, D is a

convex polytope of finite volume

bounded by hyperplanes Hi , i 2 I such

that for all i; j 2 I, i 6¼ j, the hyperplanes

Hi and Hj are disjoint or form a dihedral angle of �=mij for

some integer mij � 2. The group of isometries generated by

the reflections Ri in the hyperplanes Hi of D is called a Coxeter

group G with defining relations Ri
2 ¼ ðRiRjÞ

mij ¼ e. If the two

hyperplanes are parallel, the corresponding relation with

mij ¼ 1 is omitted.

The Coxeter group G is discrete and D is a fundamental

polytope for G. This means that the polytopes gD, g 2 G do

not have pairwise common interior points and cover Xd; that

is, they form a tessellation T for Xd. The tessellation T is the

G-orbit of D, that is, T ¼ fgDjg 2 Gg. Moreover, StabGðDÞ ¼

fg 2 GjgD ¼ Dg is the trivial group feg and G acts transitively

on T . We call discrete Coxeter groups with fundamental

polytopes of finite volume crystallographic Coxeter groups

(Vinberg, 1985).

In X2, an example of a crystallographic Coxeter group is the

triangle group. A triangle group �abc is generated by the

reflections A;B;C about the sides of a triangle � (a two-

dimensional Coxeter polytope) with interior angles �=a, �=b

and �=c. The generators A;B;C satisfy the relations
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Figure 1
(a) Uncolored honeycomb with planes of reflections (generators) for its symmetry group G. (b) The
planes mP;mQ;mR;mS of the reflections P;Q;R; S viewed on a cubic cell. (c) A vertex-coloring of
the cubic honeycomb f4; 3; 4g. (d) Unit cell of NbO.



A2
¼ B2

¼ C2
¼ BAð Þ

c
¼ CAð Þ

b
¼ BCð Þ

a
¼ e:

Among the well known triangle groups are the three crystal-

lographic Coxeter groups in E2, namely, p4mm, p6mm and

p3m1 (in IUCr notation). In H2, an example is the extended

modular group �321. We illustrate in Fig. 2 a tessellation by a

hyperbolic triangle � with interior angles �=3, �=2 and zero.

The extended modular group is generated by A;B;C whose

axes of reflections are shown.

In X
3, the Coxeter tetrahedron groups, generated by

reflections along the faces of a tetrahedron of finite volume,

are examples of crystallographic Coxeter groups. A well

known example in E
3 is the Coxeter tetrahedron group

discussed earlier, isomorphic to the space group Pm3m. In the

hyperbolic case there are 32 Coxeter tetrahedron groups with

fundamental tetrahedra of finite volume, nine compact types

with no vertices at infinity and 23 non-compact ones with at

least one ideal vertex (Johnson et al., 1999).

Some other known examples of crystallographic Coxeter

groups include those having Coxeter simplices as fundamental

polytopes. In H4, for instance, there are five compact and nine

non-compact Coxeter simplices. There are 12, three, four, five

and three Coxeter simplices in H
5, H6, H7, H8 and H

9,

respectively, all of which are non-compact (Johnson et al.,

1999).

3. Colorings of n-dimensional tessellations by Coxeter
polytopes

In this section we will discuss the underlying ideas used in

determining the subgroups of a crystallographic Coxeter

group. The link between group theory and color symmetry

theory will be the basis for the derivation of these subgroups.

Let us consider a subgroup H of a Coxeter group G of finite

index and OH ¼ HD ¼ hDjh 2 Hf g, the H-orbit of the

corresponding fundamental polytope D of G. Then StabH Dð Þ

= ef g and H acts transitively on OH (Vinberg, 1985). Conse-

quently, there exists a one-to-one correspondence between H

andOH given by h! hD, h 2 H and h0 2 H acts on hD 2 OH

by sending it to its image under h0.

In this work, the index-n subgroups of H will be derived

using n-colorings ofOH. An n-coloring ofOH refers to an onto

function g from OH to a set C ¼ fc1; c2; . . . ; cng of n colors,

that is, to each hD 2 OH is assigned a color in C. This coloring

determines a partition fg�1 cið Þjci 2 Cg where g�1 cið Þ is the set

of elements of OH assigned color ci. Equivalently, we may

think of the coloring as a partition of OH (which corresponds

to a partition of H). We will consider H-transitive n-colorings

of OH, that is, colorings for which H has a transitive action on

the set C of n colors.

The theorem below forms the basis of our methodology. For

a proof of the theorem, the reader may refer to De Las Peñas

et al. (2010).

Theorem 1. Let H be a subgroup of a Coxeter group G and

consider OH ¼ hDjh 2 Hf g the H-orbit of the corresponding

Coxeter polytope D.

(i) Suppose M is a subgroup of H of index n. Let

fh01; h02; . . . ; h0ng be a complete set of left coset representatives

of M in H and fc1; c2; . . . ; cng a set of n colors. Then the

assignment h0iMD! ci defines an n-coloring of OH which is

H-transitive.

(ii) In an H-transitive n-coloring of OH, the elements of H

which fix a specific color in the colored setOH form an index-n

subgroup of H.

If a coloring of OH is given by g : OH ¼ HD! C

¼ fc1; c2; . . . ; cng where g xð Þ ¼ ci if x 2 h0iMD, then

g�1 cið Þ ¼ h0iMD. The group H acts transitively on

fh01MD; h02MD; . . . ; h0nMDg with h 2 H sending h0iMD to

hh0iMD. We get a transitive action of H on C by defining for

h 2 H, hci ¼ cj if and only if hg�1 cið Þ ¼ g�1ðcjÞ. The n-coloring

of OH determined by g is H-transitive. This n-coloring corre-

sponds to the action of H on the cosets of M in H.

Given a subgroup M of H of index n and the set C of n

colors, there will correspond n� 1ð Þ! H-transitive n-colorings

of OH with M fixing a specific color (say c1). In a H-transitive

n-coloring ofOH with M fixing c1, the set of Coxeter polytopes

MD is assigned c1 and the remaining n� 1 colors are

distributed among the h0iMD, hi 2 H.

4. Setting in determining subgroups of crystallographic
Coxeter groups

If we let H ¼ hh1; h2; . . . ; hli be a subgroup of G, Theorem 1

tells us that there is a one-to-one correspondence between the

set of index-n subgroups of H and the set of all H-transitive

n-colorings of OH. To arrive at a subgroup of H, we construct

all transitive n-colorings of OH using a set C ¼ fc1; c2; . . . ; cng

of n-colors with the property that all elements of H effect

permutations of C and H acts transitively on C. Now, for each

such coloring of OH, a homomorphism f : H ! Sn is defined

where, for each h 2 H, f ðhÞ is the permutation of the colors

in OH effected by h. Note that f is completely determined

when f ðh1Þ; f ðh2Þ; . . . ; f ðhlÞ are specified. We call the set

ff ðh1Þ; f ðh2Þ; . . . ; f ðhlÞg a permutation assignment that gives

rise to a subgroup M of H of index n. The subgroup M consists

of all the elements of H that fix a specific color in the

n-coloring.

The goal is to come up with a set P of permutation

assignments ff ðh1Þ; f ðh2Þ; . . . ; f ðhlÞg corresponding to the

H-transitive n-colorings ofOH that will give rise to the index-n

subgroups of H distinct up to conjugacy in H. See Holt et al.
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Figure 2
A tessellation of the upper half plane by a hyperbolic triangle � with
interior angles �=3, �=2 and zero. The axes of reflections A;B;C are
shown.



(2005) for a related discussion. To do this, we first consider the

set T ¼ fT1;T2; . . . ;Tkg of transitive subgroups of Sn. Then

for each Tj 2 T, j ¼ 1; 2; . . . ; k, we put together the set Pj

consisting of permutation assignments such that f Hð Þ ¼ Tj.

Note that in each set Pj there corresponds, for each index-n

subgroup M of H, n� 1ð Þ! H-transitive n-colorings of OH with

M fixing c1. That is, n� 1ð Þ! permutation assignments in Pj

will yield the subgroup M. To ensure an enumeration

of distinct subgroups, if the permutation assignment

ff ðh1Þ; f ðh2Þ; . . . ; f ðhlÞg 2 Pj corresponds to a subgroup M we

delete the elements sff ðh1Þ; f ðh2Þ; . . . ; f ðhlÞgs
�1 from Pj for all

non-identity elements s of Sn fixing 1. Furthermore, we also

remove from Pj the permutation assignments that will yield

conjugate subgroups of M and the resulting set is then called

P
0
j. Finally, from the union of the sets P0j, we form the set P

consisting of the permutation assignments satisfying the divi-

sibility conditions relative to the defining relations of H such

as the order of f ðhiÞ divides the order of hi.

To illustrate the methodology just described, we derive the

index-6 subgroups of the group H ¼ abc, an index-2 subgroup

of the triangle group �abc consisting of orientation-preserving

isometries. The group H has generators BA;CA;BC satisfying

the relations BAð Þ
c
¼ CAð Þ

b
¼ BCð Þ

a
¼ e. In the tiling

obtained by reflecting a triangle � with interior angles �/a, �/b

and �/c, we consider all transitive 6-colorings of the H-orbit

OH of � using a set C ¼ fc1; c2; c3; c4; c5; c6g of 6 colors with

the property that all elements of H effect permutations of C

and H acts transitively on C. To achieve this goal, we get the

set P of permutation assignments ff BAð Þ; f CAð Þ; f ðBCÞg

corresponding to the H-transitive 6-colorings of OH that will

give rise to the index-6 subgroups of H distinct up to conjugacy

in H.

In this case, the set T consisting of the transitive subgroups

of the symmetric group S6 (Conway et al., 1998; Jones, 2006)

consists of 16 groups: S6, the dihedral group D6, the alternating

group A6, the two order-6 groups, C6 and S3ð6Þ (isomorphic to

the cyclic group Z6 and S3, respectively), the order-12

group A4ð6Þ (isomorphic to A6 \ S4), the three order-24

groups 2A4ð6Þ, S4ð6dÞ and S4ð6cÞ [isomorphic to C2wr3C3,

A6 \ ðS2wr3S3Þ and S4, respectively], the order-18 group F18ð6Þ

(isomorphic to C3wr2C2), the two order-36 groups F18 6ð Þ : 2

and F36ð6Þ [isomorphic to A6 \ S3wr2C2ð Þ], the order-48 group

2S4ð6Þ (isomorphic to S2wr3S3), the order-60 group A5ð6Þ

[isomorphic to PSLð2; 5Þ, a two-dimensional projective special

linear group over a field of order 5], the order-72 group

F36 6ð Þ : 2 (isomorphic to S3wr2S2) and the order-120 group

S5ð6Þ [isomorphic to PGL2ð5Þ, a two-dimensional projective

general linear group over a field of order 5].

For each transitive subgroup Tj 2 T, we form the set Pj

consisting of permutation assignments to ff BAð Þ; f CAð Þ;
f ðBCÞg such that f Hð Þ ¼ Tj. To arrive at the set P0j, for each M,

we eliminate from Pj the 6� 1ð Þ! permutation assignments

from Pj that will yield the same subgroup M and all those

elements that will yield the conjugate subgroups of M.

Combining the elements of the sets P0j altogether yields 624

permutation assignments that will give rise to 624 index-6

subgroups of H distinct up to conjugacy if a; b and c are all

divisible by 2, 3, 4, 5 and 6.

To demonstrate the applicability of the above result, we

derive the index-6 subgroups of the group 632. For this group,

BA;CA;BC satisfy the relations BAð Þ
2
¼ CAð Þ

3
¼ BCð Þ

6
¼ e.

Thus, from the list of permutation assignments, we consider

those where the order of f BAð Þ divides 2, the order of f CAð Þ

divides 3 and the order of f BCð Þ divides 6. Of the 624

permutation assignments, we find five such permutation

assignments that give rise to index-6 subgroups of 632. The list

is presented in Table 1.

For example, the permutation assignment

f BAð Þ; f CAð Þ; f BCð Þ
� �

¼ f 14ð Þð25Þð36Þ; 135ð Þ 246ð Þ; 123456ð Þg

corresponds to the H-transitive 6-coloring of OH in

Fig. 3(a) which gives rise to the index-6 subgroup

hBACBAC;BCABCAi. The colors yellow, orange, pink,

green, blue and violet are assigned the numbers 1, 2, 3, 4,

5, 6, respectively. It can be verified that the group of symme-

tries fixing the color yellow is generated by the

translations BACBAC = ðBACABÞC and BCABCA =

½BAðCACÞAB�CAC.

Similarly, we take the index-6 subgroups of the modular

group 321, which is an index-2 subgroup of the extended

modular group �321, consisting of orientation-preserving

isometries. It may be generated by CA;BC satisfying the

relations BCð Þ
3
¼ CAð Þ

2
¼ e. Consequently, from the list of

624 permutation assignments, we consider only those where

the order of f ðBCÞ divides 3 and the order of f ðCAÞ divides 2.

The list of eight permutation assignments that give rise to

index-6 subgroups of the modular group is presented in

Table 2.

5. Torsion-free subgroups of orientation-preserving
subgroups

In this part of the paper, we extend the methodology given in

the previous sections to determine torsion-free subgroups of

the subgroup consisting of orientation-preserving isometries

of a given crystallographic Coxeter group.
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Table 1
Colorings corresponding to the index-6 subgroups of the modular group 632.

f ð632Þ f ðBAÞ f ðCAÞ f ðBCÞ Generators

ðaÞ C6 ð14Þð25Þð36Þ ð135Þð246Þ ð123456Þ BACBAC;BCABCA
ðbÞ S3ð6Þ ð12Þð36Þð45Þ (135)(246) ð16Þð25Þð34Þ BACBCA;BCABAC
ðcÞ A4ð6Þ ð25Þð36Þ ð123Þð456Þ ð135Þð246Þ BA;CABACBCA; CABCBACBAC
ðdÞ F18ð6Þ ð12Þð34Þð56Þ ð246Þ ð165432Þ CA;BACABACBACAB
ðeÞ 2A4ð6Þ ð36Þ ð123Þð456Þ ð135462Þ BA;CABC; ACBACABCABCA



We recall that a crystallographic Coxeter group G has as

generators the reflections Ri and defining relations Ri
2 ¼

ðRiRjÞ
mij ¼ e, mij 2 Z, mij � 2. One of the important

subgroups of G is its index-2 subgroup G0 consisting of

orientation-preserving isometries. We term the product RiRj a

relator of G0, if it is of finite order. Note that the set of relators

generates the group G0.

As in x4, given a transitive n-coloring of a partition of G0,

let f be the homomorphism from G0 to Sn, and let � be

a permutation assignment which gives rise to an

index-n subgroup M of G0 with M fixing color 1. Suppose

y is a relator of G0. If f ðyÞ fixes a number i 2 f1; 2; . . . ; ng,

then zyz�1 2 M for some z 2 G0. Moreover, if f ðyÞ is of

order l, then yl 2 M. Note that it is a well known result

that an element w 2 G0 is of finite order if and only if

it is conjugate to a power of a relator of G0 (Magnus, 1974).

We can then say that a permutation assignment � which

gives rise to a subgroup M of G0 is torsion free if, for each

relator y, f ðyÞ does not fix any number i and the order of

f ðyÞ is equal to the order of y. To satisfy both conditions, if y

has order d, f ðyÞ should be a permutation consisting of a

product of n=d disjoint d-cycles. Such a permutation assign-

ment � with this property is called a semi-regular permutation

assignment.
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Figure 3
The transitive 6-colorings corresponding to the index-6 subgroups of 632 given in Table 1.

Table 2
Colorings corresponding to the index-6 subgroups of the modular group 321.

f ð321Þ f ðBAÞ f ðCAÞ f ðBCÞ Generators

ðaÞ C6 ð123456Þ ð14Þð25Þð36Þ ð153Þð264Þ BACBCA;BCBABA
ðbÞ S3ð6Þ ð14Þð23Þð56Þ (12)(36)(45) (153)(264) BABA;CBABCA
ðcÞ A4ð6Þ ð123Þð456Þ ð25Þð36Þ ð153Þð264Þ CA;BABABA;BACBABCABA
ðdÞ F18ð6Þ ð123456Þ ð12Þð34Þð56Þ ð246Þ CB;ABACBABA; ACBABABCBA
ðeÞ 2A4ð6Þ ð123456Þ ð36Þ ð126Þð345Þ BCAB;ABABCABABA;ABABABABABAB;CA
ðf Þ S4ð6cÞ ð2356Þ ð12Þð36Þð45Þ ð126Þð345Þ BA;CBABABABAC
ðgÞ S4ð6dÞ ð1245Þð36Þ ð23Þð56Þ ð135Þð246Þ CA;BABABABA; BABCBABA
ðhÞ A5ð6Þ 12345ð Þ ð35Þð46Þ 125ð Þ 364ð Þ CA;BACB;ABABABABAB



Theorem 2. A subgroup M of G0 is torsion free if and only if

the permutation assignment � that gives rise to M is a semi-

regular permutation assignment.

Proof. Let M be an index-n subgroup of G0.

Suppose � is a semi-regular permutation assignment that

gives rise to M. Consider z an element of order m in G0. Then

z is a conjugate to a power of a relator of G0, say, v; that is

z ¼ wvw�1, for some w 2 G0. Since f ðzÞ ¼ f ðwvw�1Þ ¼

f ðwÞf ðvÞf ðwÞ
�1 and f ðvÞ is a permutation having n=m disjoint

m-cycles, f ðzÞ is a permutation having n=m disjoint m-cycles

which implies that z does not fix 1. Thus every element of finite

order in G0 is not an element of M and, consequently, M is

torsion free.

Conversely suppose M is a torsion-free subgroup of G0. Let

g be an element of G0 of order m. It is easy to see that gk 2 M

if and only if m divides k, since M is torsion free. This means

that if k is not divisible by m, then f ðgkÞ does not fix 1, and so

f ðgkÞ also does not fix 2, . . . ; n because f ðhgkh�1Þ cannot fix 1

for any h 2 G0. Therefore, f ðgÞ is a permutation of order m

and no nontrivial power of f ðgÞ fixes any number in

1; 2; . . . ; nf g; that is, f ðgÞ is a permutation having n=m disjoint

m-cycles. In particular, f ðyÞ is a permutation having n=d

disjoint d-cycles, for every relator y of order d. Hence the

permutation assignment � corresponding to the torsion-free

subgroup M of G0 is semi-regular.

As an illustration, we derive the index-6 torsion-free

subgroup of the modular group 321. From the list of

permutation assignments that give rise to index-6 subgroups of

the modular group as presented in Table 2, we consider the

permutation assignments �; � and � where

� ¼ f BAð Þ; f CAð Þ; f BCð Þ
� �

¼ 1; 2; 3; 4; 5; 6ð Þ; 14ð Þ 25ð Þ 36ð Þ; 153ð Þ 264ð Þ
� �

;

� ¼ f BAð Þ; f CAð Þ; f BCð Þ
� �

¼ 14Þ 23ð Þð56ð Þ; 12ð Þ 36ð Þ 45ð Þ; 153ð Þ 264ð Þ
� �

;

� ¼ f BAð Þ; f CAð Þ; f BCð Þ
� �

¼ 2356ð Þ; 12ð Þ 36ð Þ 45ð Þ; 126ð Þ 345ð Þ
� �

:

Note that BA is of infinite order since it is a translation; hence

it is not a relator. The relators are CA and BC which are of

order 2 and 3, respectively. Now � is a semi-regular permu-

tation assignment since f CAð Þ ¼ 14ð Þ 25ð Þ 36ð Þ is a product of

three disjoint 2-cycles and f BCð Þ ¼ 153ð Þ 264ð Þ is a product

of two disjoint 3-cycles. Thus, by Theorem 2, the permutation

assignment � gives rise to an index-6 torsion-free subgroup of

the modular group generated by translations BðACBCAÞ and

BCBð ÞðABAÞ which are products of reflections across parallel

hyperbolic lines as shown in Fig. 4(a). Similarly, � and � are

also semi-regular permutation assignments which give rise to

two more index-6 torsion-free subgroups of the modular
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Figure 4
The transitive 6-colorings corresponding to the index-6 subgroups of 321 given in Table 2.



group. The torsion-free subgroup corresponding to � is

generated by translations AðBABÞ and CBABCð ÞA that are

products of reflections across hyperparallel hyperbolic

lines shown in Fig. 4(b), while the one corresponding to �
is generated by translations BA and C BABABAð ÞC

illustrated in Fig. 4( f). In summary, 321 has three index-6

torsion-free subgroups, namely hBACBCA;BCBABAi,

hABAB;CBABCAi and hBA;CBABABABACi.

Moreover, the group 632 has one index-6 torsion-free

subgroup hBACBAC;BCABCAi which arises from the semi-

regular permutation assignment

ff BAð Þ; f CAð Þ; f BCð Þg ¼ f 14ð Þð25Þð36Þ; 135ð Þ 246ð Þ; 123456ð Þg:

As expected, this subgroup is generated by translations

ðBACABÞC and ½BAðCACÞAB�CAC exhibited in Fig. 3(a).

6. Conclusion and outlook

In this work, we have presented a method for determining the

subgroups of a crystallographic Coxeter group G and its

subgroups, where G is generated by reflections in the hyper-

planes containing the sides of a Coxeter polytope. The

approach is geometric, and facilitates the characterization

of the groups in terms of symmetries in Euclidean, spherical

or hyperbolic space. In this way, it allows for a more

systematic and helpful representation of crystal structures.

The results given here are also applicable in studying the

subgroup structure of other classes of symmetry groups in

hyperbolic space and facilitate the derivation of higher-index

subgroups.

Having acquired the means to characterize the subgroup

structure of crystallographic Coxeter groups and their

subgroups in terms of symmetries, it would be interesting to

probe further their applications (e.g. to crystal networks,

infinite periodic minimal surfaces, nanostructures) and to

study next the usage of these groups to represent other crys-

talline materials.
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thank the Ateneo de Manila University for funding support

under the Loyola Schools scholarly work grant. The authors

acknowledge the help of Mark Loyola of the Ateneo de

Manila Mathematics Department for particular figures used in

the paper. It is a pleasure to thank Marjorie Senechal for

suggestions on the problem.

References

Conway, J., Hulpke, A. & Mckay, J. (1998). J. Comput. Math, 1, 1–8.
De Las Peñas, M. L., Felix, R. & Laigo, G. (2010). Z. Kristallogr. 225,

313–338.
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